
Much Ado
About ⌘Z

Alessandro Warth
Viewpoints Research

STEPS
... toward the reinvention of

programming

The STEPS Project

• Goal - To create a highly useful end-user
system including:

• operating system

• programming environment

• “applications”

• graphics, sound, ...

The STEPS Project

• Goal - To create a highly useful end-user
system including:

• operating system

• programming environment

• “applications”

• graphics, sound, ... } personal
computing

... in
under

20,000
LOC!

... in
under

20,000
LOC!

Windows XP
~40 million LOC

Squeak
~200 thousand LOC

Why?

• “Put people in charge of their own software
destinies”

• Can’t understand 40,000,000 LOC
(an entire library!)

• Can “own” 20,000 LOC
(one 400-page book)

Why?

• Didactic value!

• Curriculum for univ. students to learn about
powerful ideas, building complex systems...

• May even be useful at high-school level

(cont’d)

The Path to 20K LOC

• Experimenting w/ new...

• abstractions

• PLs

• DSLs

λ

OMeta

Experimenting w/
Programing Languages

JavaScript (OMeta/Squeak)
~350 LOC

Sun’s Lively Kernel (OMeta/COLA)
~300 LOC

Toylog (OMeta/Squeak)
• Get children interested in logic!

• Front-end to Prolog, runs on Squeak

• ~70 LOC

Homer is Bart’s father.
Marge is Bart’s mother.
x is y’s parent if x is y’s father or
 or x is y’s mother.
Homer is not bart’s parent.
Marge is bart’s parent.
x is Bart’s parent?

Toylog (OMeta/Squeak)
• Get children interested in logic!

• Front-end to Prolog, runs on Squeak

• ~70 LOC

Homer is Bart’s father.
Marge is Bart’s mother.
x is y’s parent if x is y’s father or
 or x is y’s mother.
Homer is not bart’s parent.
Marge is bart’s parent.
x is Bart’s parent?

Toylog (OMeta/Squeak)
• Get children interested in logic!

• Front-end to Prolog, runs on Squeak

• ~70 LOC

Homer is Bart’s father.
Marge is Bart’s mother.
x is y’s parent if x is y’s father or
 or x is y’s mother.
Homer is not bart’s parent.
Marge is bart’s parent.
x is Bart’s parent?

Toylog (OMeta/Squeak)
• Get children interested in logic!

• Front-end to Prolog, runs on Squeak

• ~70 LOC

Homer is Bart’s father.
Marge is Bart’s mother.
x is y’s parent if x is y’s father or
 or x is y’s mother.
Homer is not bart’s parent.
Marge is bart’s parent.
x is Bart’s parent?

~90 LOC

Portable
Programming

Language
Prototypes!

OMeta/JS

Forget Guitar
Hero... I could be the next

Dan Ingalls!

Undo

• An important feature in most applications

• Not just about fixing mistakes:
enables exploration w/o fear

• learn by trying things out
(errors not a big deal)

• tool for experimenting w/ different
choices

UOBJECTS
(framework / library)

Undo for Users

UOBJECTS
(framework / library)

Undo for Users

WORLDS
(language contruct)

Undo for
Programs

UOBJECTS
(framework / library)

Undo for Users

WORLDS
(language contruct)

Undo for
Programs

Part I

UObjects:
Undo for Users

The Status Quo

• Most apps support linear undo

• ... which is implemented using:

• command design pattern

• memento design pattern

Command

do = ...
undo = do-1

Command

do = ...
undo = do-1

... need to
keep it for

undo

may throw
away info

Command

do = ...
undo = do-1

... need to
keep it for

undo

may throw
away info

memento

Command

do = ...
undo = do-1

... need to
keep it for

undo

may throw
away info

memento

must include
everything that
was modified

Command

do = ...
undo = do-1

... need to
keep it for

undo

may throw
away info

must be
inverses

memento

must include
everything that
was modified

Command

do = ...
undo = do-1

... need to
keep it for

undo

may throw
away info

must be
inverses

memento

must include
everything that
was modified

ERROR-P
RONE!

Proposed Approach

• Why not generate memento on the fly?

• i.e., record original values of all variables
modified

• (which may belong to mutliple objects)

• Undo writes old values back into object(s)

• No need for error-prone idiom

Programming Model

• UObject — Undoable Object

• operations: {#at, #at:put:, ...}

• may only be modified inside...

• UTransaction — Undoable Transaction

• may modify any no. of UObjects

• operations: {#undo}

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t1
obj1’s foo was ‘old’

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

obj1
foo is ‘new’

t1
obj1’s foo was ‘old’

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

obj1
foo is ‘new’

t1
obj1’s foo was ‘old’

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

obj1
foo is ‘new’

t1
obj1’s foo was ‘old’

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

obj1
foo is ‘new’

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

obj1
foo is ‘new’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

obj1
foo is ‘new’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

obj1
foo is ‘new’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

obj1
foo is ‘new’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

*

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

*

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

obj1
foo is ‘old’

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

obj1
foo is ‘old’

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

obj1
foo is ‘old’

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t2
obj1’s foo was ‘newer’
obj2’s bar was 1234

obj1
foo is ‘old’

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t2
obj1’s foo was ‘newer’
obj2’s bar was 1234

obj1
foo is ‘old’

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t2
obj1’s foo was ‘newer’
obj2’s bar was 1234

obj1
foo is ‘old’

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2 t3

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t2
obj1’s foo was ‘newer’
obj2’s bar was 1234

obj1
foo is ‘old’

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2 t3

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t2
obj1’s foo was ‘newer’
obj2’s bar was 1234

obj1
foo is ‘old’

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2 t3

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t2
obj1’s foo was ‘newer’
obj2’s bar was 1234

t3
obj1’s foo was ‘old’

obj1
foo is ‘old’

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2 t3

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t2
obj1’s foo was ‘newer’
obj2’s bar was 1234

t3
obj1’s foo was ‘old’

obj1
foo is ‘old’

obj1
foo is ‘newer’

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2 t3

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t2
obj1’s foo was ‘newer’
obj2’s bar was 1234

t3
obj1’s foo was ‘old’

obj1
foo is ‘old’

obj1
foo is ‘newer’

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2 t3

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t2
obj1’s foo was ‘newer’
obj2’s bar was 1234

t3
obj1’s foo was ‘old’

obj1
foo is ‘old’

obj1
foo is ‘newer’

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2 t3

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t2
obj1’s foo was ‘newer’
obj2’s bar was 1234

t3
obj1’s foo was ‘old’

t3
obj1’s foo was ‘old’

obj2’s bar was 5

obj1
foo is ‘old’

obj1
foo is ‘newer’

obj2
bar is 5

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2 t3

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t2
obj1’s foo was ‘newer’
obj2’s bar was 1234

t3
obj1’s foo was ‘old’

t3
obj1’s foo was ‘old’

obj2’s bar was 5

obj1
foo is ‘old’

obj1
foo is ‘newer’

obj2
bar is 5

obj2
bar is 1234

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2 t3

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t2
obj1’s foo was ‘newer’
obj2’s bar was 1234

t3
obj1’s foo was ‘old’

t3
obj1’s foo was ‘old’

obj2’s bar was 5

obj1
foo is ‘old’

obj1
foo is ‘newer’

obj2
bar is 5

obj2
bar is 1234

t1 := UTransaction eval: [
 obj1 foo: ‘new’.
 obj2 bar: 1234.
 obj1 foo: ‘newer’.
].
t2 := t1 undo. “undo”
t2 undo. “redo”

obj1
foo is ‘old’

t1

obj2
bar is 5

t2

obj1
foo is ‘new’

obj1
foo is ‘newer’

obj2
bar is 1234

t1
obj1’s foo was ‘old’

t1
obj1’s foo was ‘old’

obj2’s bar was 5

t2
obj1’s foo was ‘newer’

t2
obj1’s foo was ‘newer’
obj2’s bar was 1234

obj1
foo is ‘old’

obj1
foo is ‘newer’

obj2
bar is 5

obj2
bar is 1234

Trouble w/ Linear Undo

actioni

actioni-1

actioni-2

actioni+1

actioni+2

actioni-3

actioni-4

actioni-5

actioni+3

Trouble w/ Linear Undo

actioni

actioni-1

actioni-2

actioni+1

actioni+2

actioni-3

actioni-4

actioni-5

actioni+3actioni+3

Trouble w/ Linear Undo

actioni

actioni-1

actioni-2

actioni+1

actioni+2

actioni-3

actioni+2

actioni-4

actioni-5

actioni+3actioni+3

Trouble w/ Linear Undo

actioni

actioni-1

actioni-2

actioni+1

actioni+2

actioni-3

actioni+2

actioni+1

actioni-4

actioni-5

actioni+3actioni+3

Trouble w/ Linear Undo

actioni

actioni-1

actioni-2

actioni+1

actioni+2

actioni-3

actioni+2

actioni+1

actioni-4

actioni-5

actioni+3actioni+3
Problem:
can’t redo

actioni+2 and
actioni+3 w/o

redoing
actioni+1

Want Selective Undo

• Undo a command without first undoing
commands that were issued afterwards

• BUT some commands are based on effects
of earlier commands

• gets tricky!

Selective Undo (Sort Of)

• Can undo actioni+1 directly (no stack required)

• ... but UTransaction’s undo is transitive

• Undoing a transaction t will transitively undo all
later transactions that modified one or more
objects modified by t

• Still stack-like, but only related operations are
undo’ed transitively

• A kind of “selective undo” that makes sense

(Too Big a Hammer?)

• It may be!

• ... but we could write the program so that
different aspects of an object are stored in
different “sub-objects”

• keeps mechanism easy to understand

• Another option: take into account what
properties of what objects were modified

• No clear winner yet

Taken from the
CorelDRAW Feature

Request Site

Taken from the
GIMP UI Brainstorm

Part II

Worlds:
Undo for Programs

35

what if...
I take his knight with

my bishop?

what if...
I take his knight with

my bishop?

what if...
I take his knight with

my bishop?

Part II

Worlds:
Undo for Programs

Part II

Worlds:
Undo for ProgramsWhat

if...?

I’m Talking About...

• Programming language support for

• “thought experiments”, a.k.a.,

• “possible worlds reasoning”

• How? By enabling programmers to control
the scope of side effects.

About Side Effects

• Not all side effects!

• Only changes to the program store, e.g.,

• global, local, instance, and class variables

• arrays

• ...

Worlds

• A simple and expressive model for controlling
the scope of side effects

• Worlds: new kind of first-class store

• allows multiple versions of the program
store to co-exist

• organized hierarchically

• Worlds/Squeak and Worlds/JS

The Programming Model

The Programming Model

Top-Level
World

The Programming Model

Top-Level
World

Child
World #1

The Programming Model

Top-Level
World

Child
World #2

Child
World #1

The Programming Model

Top-Level
World

Child
World #2

Child
World #3

Child
World #1

The Programming Model

Top-Level
World

Child
World #2

Child
World #3

Child
World #1

The Programming Model

Top-Level
World

Child
World #2

Child
World #3

Child
World #1

co
m

m
it

........

........

........

........

........

........

........

........

........

co
m

m
it

Worlds/Squeak

• thisWorld

• w sprout

• w commit

• w eval: [...]

[
 xs do: [:x |
 x update
]
] on: Exception do: [
 ...
]

Exception Handling

[
 xs do: [:x |
 x update
]
] on: Exception do: [
 ...
]

save state of
collection’s elements

Exception Handling

[
 xs do: [:x |
 x update
]
] on: Exception do: [
 ...
]

save state of
collection’s elements

restore state of
collection’s elements

Exception Handling

[
 xs do: [:x |
 x update
]
] on: Exception do: [
 ...
]

Exception Handling

[
 thisWorld sprout eval: [
 xs do: [:x |
 x update
].
 thisWorld commit
]
] on: Exception do: [

]

Exception Handling

[
 thisWorld sprout eval: [
 xs do: [:x |
 x update
].
 thisWorld commit
]
] on: Exception do: [

]

Exception Handling

Sandboxing

sandbox = thisWorld.sprout();
in sandbox {
 eval(untrustedCode);
}

disableDangerousStuff = function() {
 alert = null;
 Object.prototype.forbiddenMethod = null;
 ...
}

sandbox = thisWorld.sprout();
in sandbox {
 disableDangerousStuff();
 eval(untrustedCode);
}

Sandboxing

Extension Methods in JS

Number.prototype.fact = function() {
 if (this == 0)
 return 1;
 else
 return this * (this - 1).fact();
};

print(5.fact());

Extension Methods in JS

myModule = thisWorld.sprout();
in myModule {
 Number.prototype.fact = function() { ... };
}

in myModule {
 print(5.fact());
}

scoped

v

Back to OMeta

rhyme = fee fie foe fum
 | fiddle dee dee

fee = ... -> ...
fie = ... -> ...
foe = ... -> ...
fum = ... -> ...

Back to OMeta

rhyme = fee fie foe fum
 | fiddle dee dee

fee = ... -> ...
fie = ... -> ...
foe = ... -> ...
fum = ... -> ...

Back to OMeta

rhyme = fee fie foe fum
 | fiddle dee dee

Case Study I

• Variant of OMeta/JS in which backtracking rolls
back the side effects of rules’ semantic actions

• OMeta implemented in JS, and Worlds/JS is a
proper superset of JS

• Re-implemented OR, kleene-*, etc. using
worlds

• very, very difficult to do w/o (something like)
Worlds

Case Study II
• Hypercard-like system implemented w/ Worlds

(w/ Ted Kaeher and Yoshiki Ohshima)

• All backgrounds and cards in a stack are really
just one card, viewed through different worlds

THE card

wbackground

wcard1 wcard2 wcard2
wcardi overrides the state of the
card, as it appears in wbackground

wbackground contains the
default state of the card,

which is shared by all cards

Future Work

Future Work

• Invariants!

• register inter- and intra-object inv’s
dynamically

• modify objects in transactions

• all relevant invariants checked at end of
transaction

• only commit transaction if all inv’s hold

Future Work

• Mechanisms for synchronizing distributed,
decentralized systems like

• TeaTime [Reed ‘78]

• Virtual Time / Time Warp [Jefferson ‘85]

• ... rely on support for speculative execution

• (May be able to do even better w/ Worlds)

(cont’d)

Future Work

• Worlds: a model for programming multi-
core architectures?

• e.g., choosing among optimizations

• will need efficient, HW-based impl.

(cont’d)

Part III

Churrasco!

Worlds vs. UObjects

support for spec. execution,
possible worlds reasoning transitive undo

very general, b/c it
works on every object in

the system

only affects objects
designed to work with it

very dangerous, b/c it
works on every object in

the system

only affects objects
designed to work with it

pro + con -

For more info...
http://tinlizzie.org/~awarth

Questions?

http://tinlizzie.org/~awarth
http://tinlizzie.org/~awarth

