
 package exprUtil;
 import expr.*;
 public expander tcExpander [Expr] {
 private Type type = null;
 public void tc() { type = new ErrType(); }
 public Type type() {
 if (type == null)
 tc();
 return type;
 }
 }
 public expander tcExpander of Int {
 public void tc() { type = new IntType(); }
 }
 public expander tcExpander of Flt {
 public void tc() { type = new FltType(); }
 }
 public expander tcExpander of Plus {
 public void tc() {
 Type t1 = op1().type();
 Type t2 = op2().type();
 // ...
 }
 }

Statically Scoped Object
Adaptation with Expanders

Alessandro Warth
Milan Stanojevic
Todd MillsteinUCLA COMPUTER

SCIENCE
DEPARTMENT

WHAT ARE EXPANDERS?
Expanders allow existing classes (more generally,
whole class hierarchies) to be noninvasively updated
with new methods, fields, and superinterfaces. Each
client can customize its view of a class by explicitly
importing any number of associated expanders. This
view then applies to all instances of that class, including
objects passed to the client from other components.

EXPANDERS IN ACTION
In the example below, Client2 uses the tcExpander
to augment its view of the Expr hierarchy with a new
type field and a new method tc. This additional
functionality enables Client2 to typecheck all
instances of Expr, including those created by
compilation units that are unaware of tcExpander, like
Client1.

Expr

Value Expr op1()
 Expr op2()

Plus

 int intValue()

Int
 int floatValue()

Flt

 // Client #1
 import expr.*;
 class Client1 { ... }

BENEFITS OF EXPANDERS
 Language support for the object adapter and visitor
design patterns;
 Modular reasoning (a.k.a., the "no surprises"
guarantee): an expander has no effect on the behavior
of compilation units that do not explicitly use that
expander;
 Modular compilation: a programmer may write an
expander for any class (or class hierarchy), even
without having access to its source code.

Value Expr op1()
 Expr op2()
 void tc()

Plus

 int intValue()
 void tc()

Int
 int floatValue()
 void tc()

Flt

Expr
 Type type
 void tc()

 // Client #2
 import expr.*;

 use exprUtil.tcExpander;
 class Client2 { ... }

the Expr hierarchy

the Expr hierarchy, as viewed
by a compilation unit that uses
the typechecking expander

For more information please visit
http://www.cs.ucla.edu/~awarth/expanders/

